LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

M.Sc. DEGREE EXAMINATION - STATISTICS

FIRST SEMESTER - NOVEMBER 2009
ST 1817 - STATISTICAL COMPUTING - I

Date \& Time: 13/11/2009 / 1:00-4:00
Dept. No. Max. : 100 Marks

Answer any THREE questions. All questions carry equal marks.
1 a). Fit a mixture of two normal distributions with mixing proportion as $1 / 2$ and $1 / 2$.

Age	$60-65$	$65-70$	$70-75$	$75-80$	$80-85$	$85-90$	$90-95$	$95-100$
No. of workers	3	21	150	335	326	135	26	4

Also test the goodness of fit at 5% level of significance.
b). Mails were received in an office on each of 100 days. Assuming the following data to form a random sample from a Poisson distribution, find the expected frequencies and test the goodness of fit at 5% level of significant.

No. of letters	0	1	2	3	4	5	6	7	8	9	10
Frequency	1	4	15	22	21	20	8	6	2	0	1

2 a) The following data relates to the number of accidents to 650 women working on highly explosive shells during 5 week period.

No of accidents	0	1	2	3	4	5
Frequency	450	132	41	22	3	2

Fit a Negative Binomial distribution for the above data and test the goodness of fit.
b) The following date represents the exports of leather finished products from US. Fit a logistic curve by Yule's method. Also obtain the trend values. (given $\mathrm{k}=152$)

Peroid (t)	5	18	25	35	46	50	54	60	66	70
Exports (in million \$)	67	114	131	144	150	151	151	152	153	154

(15+18)
3a) Find the inverse of the given matrix using Cayley Hamilton theorem

$$
\left(\begin{array}{lll}
3 & 1 & 1 \\
1 & 5 & 1 \\
1 & 1 & 3
\end{array}\right)
$$

b) Verify whether the following are linearly independent or not.
$\left(\begin{array}{l}4 \\ 3 \\ 2 \\ 1\end{array}\right)$
$\left(\begin{array}{l}3 \\ 2 \\ 1 \\ 1\end{array}\right)$
$\left(\begin{array}{l}7 \\ 8 \\ 2 \\ 1\end{array}\right)$
$\left(\begin{array}{l}6 \\ 3 \\ 2 \\ 5\end{array}\right)$
c) Generate a sample of size 5 from Cauchy population with scale parameter 2 and location parameter $1($ Given $\mathrm{F}(\mathrm{x})=\mathrm{R}=0.266,0.567,0.46,0.294,0.548) .(12+12+9)$
4. (a)Generate a sample of size 3 from bivariate normal distribution, $N_{2}\left|\binom{10}{20}\left(\begin{array}{cc}6 & -3 \\ -3 & 5\end{array}\right)\right|$. (given $\mathrm{F}(\mathrm{x})=\mathrm{R}=0.557,0.467,0.738$)
(b) Find the rank of the matrix $\quad\left[\begin{array}{llll}4 & 3 & 5 & 2 \\ 2 & 1 & 1 & 0\end{array}\right]$
(c). Verify whether or not the following matrix is positive definite:

$$
\left(\begin{array}{llll}
2 & 7 & 8 & 1 \\
5 & 6 & 9 & 8 \\
4 & 3 & 2 & 7 \\
6 & -4 & 4 & 3
\end{array}\right)
$$

$$
(10+12+11)
$$

5) An Investigator was interested in relating gasoline mileage (Y) to engine displacement $\left(\mathrm{X}_{1}\right)$ and number of coroborator barrels $\left(\mathrm{X}_{2}\right)$. The following data were collected on 15 automobiles.

Y Miles/Galen	X_{1} (cubic inch)	X_{2}
18.90	350	4
17.00	350	4
20.00	250	1
18.25	351	2
20.07	225	1
11.20	440	4
22.12	231	2
21.47	262	2
34.70	89.7	2
30.40	96.9	2
16.50	350	4
36.50	85.3	2
21.50	171	2
19.70	258	1
20.30	140	2

a). Obtain the least square estimate of the parameters.
b). Test the overall significance of the model.
c). Test the significance of the individual model. $(15+10+8)$

